
Derivation of the theoretical properties of SMOTE

A Notation
Let X = {X1, X2, . . . , Xp} be the p random variables measured for a sample.
Let us define the jth variable of a SMOTE sample (S = {S1, . . . , Sp}), as

Sj = Xj + U(Rj −Xj), (1)

where X is a sample from the minority class and R = {R1, . . . , Rp} is a
randomly chosen sample among the five samples from the minority class
with the smallest Euclidean distance from sample X; U is a uniform random
variable defined on the interval (0,1), independent of the other variables. The
subscripts indicate the variables of a sample while the superscripts indicate
the samples.

B A sample and its nearest neighbor are (almost) indepen-
dent when data are high-dimensional

We performed a limited set of simulations to evaluate the distribution prop-
erties of the nearest neighbor sample (XNN), the randomly chosen sample
among the five nearest neighbors (R) and their correlation with the orig-
inal samples X; we also empirically evaluated the expected value and the
variance of the SMOTE samples (S). We focused on the effect of the high-
dimensionality of data, keeping the sample size fixed at 100 and varying the
number of variables (from 2 to 10,000). The variables were simulated inde-
pendently from three distributions (uniform, normal and exponential) with
the same mean and variance (both equal to 1). The exponential distribu-
tion is positively asymmetric while the normal and uniform distributions are
symmetric.

Our results suggest that when the distribution is symmetric the expected
value of the nearest neighbor is the same as the expected value of the original
samples, regardless of the number of variables (Table 1). When the back-
ground distribution is asymmetric the expected value of the nearest neighbor
approaches the expected value of the original samples when the number of
variables increases. In a similar manner, the variance of the nearest neighbor
becomes similar to the variance of the original samples when the number
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Table 1: Distributional properties of XNN, R and S for various distributions
and number of variables. ρ(S,X) denotes the correlation coefficient between
SMOTE sample and the original sample used to generate it.

Normal Exponential Uniform
p 2 10 100 1,000 10,000 2 10 100 1,000 10,000 2 10 100 1,000 10,000

E(XNN) 1.01 1.00 1.00 1.00 1.00 0.88 0.90 0.90 0.96 0.99 1.01 0.99 1.00 1.00 1.00
var(XNN) 0.71 0.7 0.83 0.94 0.98 0.59 0.69 0.67 0.84 0.94 0.88 0.83 0.93 0.97 0.99
ρ(XNN,X) 0.69 0.67 0.22 0.07 0.02 0.68 0.73 0.22 0.05 0.02 0.69 0.70 0.23 0.07 0.02
E(R) 1.04 1.00 1.00 1.00 1.00 0.79 0.87 0.91 0.97 0.99 1.02 0.99 1.00 1.00 1.00
V ar(R) 0.62 0.70 0.86 0.95 0.98 0.45 0.62 0.69 0.87 0.95 0.82 0.86 0.94 0.98 0.99
ρ(R,X) 0.36 0.56 0.17 0.05 0.02 0.28 0.60 0.16 0.04 0.01 0.34 0.59 0.19 0.06 0.02
E(S) 1.03 1.00 1.00 1.00 1.00 0.90 0.93 0.95 0.98 0.99 1.01 0.99 1.00 1.00 1.00
var(S) 0.67 0.73 0.68 0.66 0.66 0.58 0.70 0.60 0.64 0.66 0.79 0.80 0.70 0.68 0.67
ρ(S,X) 0.74 0.86 0.71 0.66 0.63 0.67 0.87 0.73 0.65 0.63 0.69 0.87 0.70 0.66 0.64

of variables is large. Even more interestingly, the correlation between the
original sample and its nearest neighbor goes to zero when the number of
variables is large, meaning that the original sample and its nearest neighbor
are independent when the number of variables is large. This property has
already been observed by others (Beyer et al., 1999; Hinneburg et al., 2000).

In practice the SMOTE samples are not necessarily defined using the
nearest neighbor sample, but randomly choosing one of the five nearest neigh-
bors. This choice further reduces the distributional differences between the
the original and SMOTE samples and their correlation (data not shown).
In the proofs we will assume that the effectively employed nearest neighbors
and the original samples have the same expected values for symmetric distri-
butions, and that they are independent and share the same distribution for
high-dimensional data.

C SMOTE does not change the expected value in the
(SMOTE-augmented) minority class for high-dimensional
data

Assuming that the expected value of the jth variable is the same for all
the samples of the minority class (E(Xs

j ) = E(Xj) for samples s from the
minority class)

E(Sj) =
1

2
(E(Rj) + E(Xj)) .
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Further assuming that the expected values of R and of the minority class
samples are equal we obtain that

E(Sj) = E(Xj),

i.e., the expected value of the jth variable generated for the SMOTE sample
is equal to the expected value of the variable from the original samples of the
minority class. In practice the additional assumption is met for symmetric
distributions or for high-dimensional data (Table 1).

Proof. Using the definition of eq. 1, we have

E(Sj) = E (Xj + U(Rj −Xj))

= E(Xj) + E(U) (E(Rj)− E(Xj))

=
1

2
(E(Rj) + E(Xj)) , (2)

because U is independent of the variables Xj and Rj, and because we as-
sumed the equality of the expected values in the minority class. The expres-
sion further simplifies to, E(Sj) = E(Xj) for symmetric or high-dimensional
data (assuming that E(Rj) = E(Xj)). Our simulation results confirmed
that in practice for symmetric distributions and for high-dimensional data
the expected value of the SMOTE samples is equal to the expected value of
the original samples (Table 1). Note that only the equality of the first mo-
ment is required, while it is not necessary that the variables have the same
distribution in the minority class or that they are independent.

Using the same assumptions used in the previous proof, it is straight-
forward to show that, E(S) = 1

2
(E(R) + E(X)) or, assuming that the first

moments of R are equal to those from the minority class, E(R) = E(X).

D SMOTE decreases the variability of the (SMOTE-augmented)
minority class

Assuming that the samples from the minority class are independent and
have the same first two moments for the variable Xj (E(Xs

j ) = E(Xj) and
var(Xs

j ) = var(Xj) for all samples s of the minority class),

var(Sj) =
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj)
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+
1

12
E(Xj)

2 +
1

12
E(Rj)

2 − 2

12
E(Xj)E(Rj).

(3)

The expression simplifies to

var(Sj) =
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj) (4)

for symmetric distributions and to

var(Rj) =
2

3
var(Xj). (5)

for high-dimensional data.
Proof. The variance of a variable can be expressed as

var (Sj) = E
(
S2
j

)
− E (Sj)

2 . (6)

We expand the first term of the equation

E
(
S2
j

)
= E

(
(Xj + U(Rj −Xj))

2
)

= E
(
X2

j + 2U ·Xj (Rj −Xj) + U2
(
R2

j − 2RjXj +X2
j

))
=

1

3
E
(
X2

j

)
+

1

3
E
(
R2

j

)
+

1

3
E (RjXj)

(7)

Here we used the assumptions that the samples in the minority class
are independent and that their first two moments are equal. Recall that
E(U) = 1/2 and E(U2) = 1/3 for U(0,1).

Going back to Equation 6

var(Sj) = E
(
S2
j

)
− E (Sj)

2

=
1

3
E(X2

j ) +
1

3
E
(
R2
j

)
+

1

3
E(XjRj)−

(
1

2
(E (Rj) + E (Xj) )

)2

=
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj)

+
1

12
E(Xj)

2 +
1

12
E(Rj)

2 − 2

12
E(Xj)E(Rj),

(8)
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we complete the proof.
The expression can be further simplified for symmetric distributions (E(Rj) =

E(Xj)) and for high-dimensional data (var(Rj) = var(Xj) and cov(Xj, Rj) =
0). Our simulation results confirmed that in practice the variance of the
SMOTE samples is smaller compared to the variance of the original samples,
and it is equal to two thirds of the variance of the original samples when data
are high-dimensional (Figure 1).

We are interested also in the covariance between different variables for
SMOTE samples (cov(Sj, Si), with j 6= i). Assuming that the variables are
independent in the original samples (cov(Xj, Xi) = 0), the variables remain
independent also for the SMOTE samples if the distribution is symmetric or
data are high-dimensional

cov(Sj, Si) = 0, j 6= i.

Proof. The covariance between different variables (Sj and Si, with i 6= j)
for a SMOTE sample is

cov (Sj, Si) = cov (Xj + U(Rj −Xj), Xi + U(Ri −Xi))

= var(U) (E(Xj)− E(Rj))
2 =

=
1

12
(E(Xj)− E(Rj))

2 ,

where we use the assumption that cov(Xj, Xi) = 0, and the fact that
cov(UXj, Xi) = E(U)cov(Xj, Xi) = 0 and cov(UXj, UXi) = var(U)E(Xj)E(Xi)
for j 6= i, since we assumed that the variables are independent in the original
samples. Recall also that var(U) = 1

12
. The variables of the SMOTE sam-

ples are therefore slightly positively correlated, unless the distribution of the
variables is symmetric or data are high-dimensional, where E(Xj) = E(Rj).

E SMOTE introduces a correlation between samples
The SMOTE samples are correlated with the samples from the minority class
that were used to generate their values (Xj and Rj in Eq. 1), and with the
other SMOTE samples that were generated using the same minority class
samples.

Let Ssj and Stj, s 6= t be the jth variables of two different SMOTE samples,
defined as Ssj = Xs

j + U s(Rs
j − Xs

j ) and Stj = X t
j + U t(Rt

j − X t
j), where U s
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and U t are independent uniform variables U(0, 1) and Xs
j , X

t
j , R

s
j and Rt

j are
samples from the minority class, defined as in Eq. 1 (note that Rs

j and Rt
j are

randomly chosen among the 5 nearest neighbors of Xs and Xr, respectively).
Assuming that the samples of the minority class are independent between

each other and have the same variances for the jth variable (var(Xs
j ) =

var(Xj) for all the samples s of the minority class), the correlation (ρ) of the
jth variable between SMOTE samples is

ρ
(
Ss
j , S

t
j

)
=


(
1
4
(var(Xj) + var(Rj)) +

1
2
cov(Rj , Xj)

)
/var(Sj) if (Xs

j = Xt
j and Rs

j = Rt
j)

or (Xs
j = Rt

j and Xt
j = Rs

j)(
1
4
var(Xj) +

1
2
cov(Rj , Xj)

)
/var(Sj) if (Xs

j = Xt
j and Rs

j 6= Rt
j)(

1
4
var(Rj) +

1
2
cov(Rj , Xj)

)
/var(Sj) if (Xs

j 6= Xt
j and Rs

j = Rt
j)

0 otherwise;

where the var(Sj) is the variance of the SMOTE samples, given in Equations
3, 4 and 6.
Note that the first condition requires that the SMOTE samples were gener-
ated using the same two original samples, while the other positive correla-
tions are obtained if the SMOTE samples were generated using exactly one
common sample. SMOTE samples are not correlated if they were generated
using different original samples.

In the high-dimensional case the correlation simplifies to

ρ
(
Ss
j , S

t
j

)
=


3/4 if (Xs

j = Xt
j and Rs

j = Rt
j) or (X

s
j = Rt

j and Xt
j = Rs

j)
3/8 if (Xs

j = Xt
j and Rs

j 6= Rt
j)

3/8 if (Xs
j 6= Xt

j and Rs
j = Rt

j)
0 otherwise.

Using the same assumptions described above, the correlation between a
SMOTE sample and an original sample X for the jth variable is positive if
the original sample was used to generate the SMOTE sample, i.e.,

ρ(Ssj , Xj) =

{ √
3

2
√
2

if Xj = Xs
j or Xj = Rs

j

0 otherwise.

Proof. We first derive the covariances for the jth variable between two
SMOTE samples. The covariance between Ssj and Stj can be expressed as

cov(Ssj , S
t
j) = cov

(
Xs
j + U s

(
Rs
j −Xs

j

)
, X t

j + U t
(
Rt
j −X t

j

))
= cov(Xs

j , X
t
j) + E(U)cov(Xs

j , R
t
j)− E(U)cov(Xs

j , X
t
j) +
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+ E(U)cov(Rs
j , X

t
j) + E(U)2cov(Rs

j , R
t
j)− E(U)2cov(Rs

j , X
t
j)−

− E(U)cov(Xs
j , X

t
j)− E(U)2cov(Xs

j , R
t
j) + E(U)2cov(Xs

j , X
t
j).

=
1

4

(
cov(Xs

j , X
t
j) + cov(Xs

j , R
t
j) + cov(Rs

j , X
t
j) + cov(Rs

j , R
t
j)
)

Assuming that the samples in the minority class are independent but can
be correlated with their nearest neighbors we obtain

cov(Ss
j , S

t
j) =


1
4
(var(Xj) + var(Rj)) +

1
2
cov(Rj , Xj) if (Xs

j = Xt
j and Rs

j = Rt
j)

or (Xs
j = Rt

j and Xt
j = Rs

j)
1
4
var(Xj) +

1
2
cov(Rj , Xj) if (Xs

j = Xt
j and Rs

j 6= Rt
j)

1
4
var(Rj) +

1
2
cov(Rj , Xj) if (Xs

j 6= Xt
j and Rs

j = Rt
j)

0 otherwise.

For high-dimensional data, where the nearest neighbor and original sam-
ples are not correlated and have the same distribution, the result simplifies
to

cov(Ss
j , S

t
j) =


1
2var(Xj) if (Xs

j = Xt
j and Rs

j = Rt
j) or (X

s
j = Rt

j and Xt
j = Rs

j)
1
4var(Xj) if (Xs

j = Xt
j and Rs

j 6= Rt
j)

1
4var(Xj) if (Xs

j 6= Xt
j and Rs

j = Rt
j)

0 otherwise.

The correlations between two variables are derived with the usual formula

ρ(X, Y ) =
cov(X, Y )√
var(X)var(Y )

.

Note that the variance of the SMOTE samples was derived (Equations 3 to
5).

The covariance between a SMOTE sample and original samples in the
high-dimensional setting can be derived using the same procedure described
above, and is equal to

cov(Ssj , Xj) =

{
1/2 · var(Xj) if (Xj = Xs

j or Xj = Rs
j)

0 otherwise,

therefore the positive correlation is equal to
√
3

2
√
2
.

In practice the correlations tend to be even higher because each original
sample has a slightly positive correlation with its nearest neighbor.
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F SMOTE reduces the expected Euclidean distance be-
tween test samples and the (SMOTE-augmented) mi-
nority class, while it increases its variability if the number
of variables is large

Let us denote with d(a,b) =
√∑p

j=1(aj − bj)2 the Euclidean distance be-

tween samples a and b, with E(d) the expected value of the Euclidean dis-
tance and with var(d) its variance; d2(a,b) =

∑p
j=1(aj − bj)

2 denotes the
Euclidean squared distance. Xtest is a sample from the test set, X is a sam-
ple from the original training set and S is a SMOTE sample. The expected
value of the Euclidean distance and its variance are derived using the Delta
method; as a first step, we derive the expected values and the variances of
the Euclidean squared distance (E(d2) and var(d2)).

Expected value of Euclidean squared distance Assuming that data are high-
dimensional and that the original samples are independent and have the
same expected values and variances for all the variables (E(X) = E(Xs

j ) and
var(X) = var(Xs

j ) for all j and s), regardless of their class membership (i.e.,
there are no differences between the classes and all the variables come from
distributions that have the same first two moments),

E(d2(Xtest,X)) = 2p · var(X) > 2p
5

6
· var(X) = E

(
d2
(
Xtest,S

))
(9)

Proof. The expected value of the Euclidean squared distance between a
test sample and an original sample can be expressed as

E(d2(Xtest,X)) = E

 p∑
j=1

(X test
j −Xs

j )
2


=

p∑
j=1

E
(
(X test

j −Xs
j )

2
)

=
p∑
j=1

(
E
(
(X test

j )2
)
− 2E(X test

j )E(Xs
j ) + E

(
(Xs

j )
2
))

= 2 · p · var(X), (10)

which is obtained with simple algebra and using the assumptions of inde-
pendence between samples and of equality of expected values and variances
for all the variables.
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The expected value of the Euclidean squared distance between test sam-
ples and SMOTE sample is

E(d2(Xtest,S)) = E

 p∑
j=1

(
Xtest

j − (Xj + U(Rj −Xj))
)2

=

p∑
j=1

E
(
(Xtest

j − (Xj + U(Rj −Xj)))
2
)

=

p∑
j=1

(
4

3
E(X2

j ) +
1

3
E(R2

j ) +
1

3
E(XjRj)− E(Xj)

2 − E(Xj)E(Rj)

)
= p · (4

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj , Rj) +

+
1

3
E(Xj)

2 +
1

3
E(Rj)

2 − 2

3
E(Xj)E(RNN

j )),

(11)

which is derived using the same assumptions listed above and with simple
algebra.

For symmetric distributions the expression simplifies to

E(d2(Xtest,S)) = p ·
(

4

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj)

)
,

and for high-dimensional data to

E(d2(Xtest,S)) = 2 · p · 5

6
· var(X).

Variance of Euclidean squared distance For high-dimensional data, assuming
that the samples from the original training set are independent, and that the
first four moments of all the p variables are equal for all the samples, if the
number of variables is large (p > p∗) the variance of the Euclidean distance
between test samples and samples from the SMOTE-augmented training set
is larger if the distance is calculated from a SMOTE sample rather than from
an original sample, i.e.,

var
(
d2(Xtest,X)

)
< var

(
d2(Xtest,S)

)
, if p > p∗.

The minimum number of variables p∗ for which the inequality holds depends
on the first four moments of the distribution the variables and can be derived
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if the distribution of the variables is specified and its first four moments exist
and are finite.

Proof. The variance of the Euclidean squared distance between original
and test samples can be expressed as

var
(
d2(Xtest,X)

)
= var

 p∑
j=1

(
X test
j −Xj

)2
=

p∑
j=1

E(X test
j −Xj)

4 − 4
p∑
j=1

var(Xj)
2

= 2 · p · A− 4 · p · var(X)2

= 2 · p · (A− 2 · var(X)2), (12)

where A = E(X4) − 4E(X3)E(X) + 3E(X2)2; note that the distance
variable is not degenerate (has a positive variance) if A− 2var(X)2 > 0.

The variance of the Euclidean squared distance between new and SMOTE
samples can be expressed as

var
(
d2(Xtest,S)

)
= var

 p∑
j=1

(
X test
j − (Xj + U(Rj −Xj))

)2 .
Defining Zj =

(
X test
j − (Xj + U(Rj −Xj))

)2
, the variance can be rewrit-

ten as

p∑
j=1

var(Zj)+2
∑
i<j

cov(Zi, Zj) =
p∑
j=1

(E(Z2
j )−E(Zj)

2)+2
∑
i<j

cov(Zi, Zj) (13)

With simple algebra and using the assumptions of independence and equality
of the first four moments, it can be shown that

E(Z2
j ) =

6

5
E(X4) +

1

5
E
(
R4
)

− E
(
R3
)
E(X) +

1

5
E
(
R3X

)
− 2E (R)E(X3)

+
1

5
E(RX3)− 3E(X)E(X3)

+ 2E
(
R2
)
E(X2) +

1

5
E
(
R2X2

)
+ 2E(X2)E(X2)
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+ 2E(RX)E(X2)− E(R2X)E(X)− E(RX2)E(X)

(14)

and

cov(Zi, Zj) =
4

45
E
(
R2
)
E
(
R2
)
− 7

45
E
(
R2
)
E
(
X2
)

+
4

45
E(X2)E(X2)

− 1

45
E
(
R2
)
E (RX)− 4

12
E
(
R2
)
E (R)E (X)

− 1

45
E
(
X2
)
E (RX) +

4

12
E
(
X2
)
E (R)E (X)

+
4

12
E(R)E(X)3 − 4

12
E(X)4 +

2

90
E (RX)2 .

(15)

These expressions simplify for high-dimensional data to

E(Z2
j ) =

7

10
(2E(X4)− 8E(X3)E(X) + 6E(X2)2) =

7

5
A,

cov(Zi, Zj) =
14

5
var(X)2 −

(
2

5

6
var(X)

)2

=
1

45
var(X)2;

Substituting these quantities in Eq. 13, we obtain the variance of the
Euclidean squared distance between new and SMOTE samples for high-
dimensional data

7

5
pA− 25

9
p·var(X)2+p(p−1)

1

45
var(X)2 =

7

5
pA+

p2

45
var(X)2−p14

5
var(X)2.

Expected value of Euclidean distance for high-dimensional data For high-
dimensional data, making the same assumptions used to derive the variance
of the Euclidean squared distance, and using the Delta method with a second
order Taylor series approximation, we can derive the approximate expected
value of the Euclidean distance as

E(d(a, b)) ≈
√
E(d2(a, b))− 1

8
· var(d

2(a, b))

E(d2(a, b))3/2
.

The expected value of the Euclidean distance between a test sample and an
original sample is approximately
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E(d(Xtest,X)) ≈
√

2p · var(X)

(
1− 1

16
· A− 2var(X)2

p · var(X)2

)
,

while the expected value of the Euclidean distance between SMOTE and test
samples is approximately

E(d(Xtest,S)) ≈
√
2p · 5

6
var(X)

(
1− 9

1000

7A+ p
9var(X)2 − 14 · var(X)2

p · var(X)2

)
.

Let us define δE the difference between the two expected values

δE = E
(
d(Xtest,X)

)
− E

(
d(Xtest,S)

)
=

√
2p · var(X)

1001

1000
−
√

5

6
+

A− 2var(X)2

2000 · p · var(X)2

 ;

(16)

since we assumed that A− 2var(X)2 > 0 (Eq. 13), δE is positive for any
p > 0; moreover, δE is an increasing function in p because its first derivative
is positive:

∂δE
∂p

=

(
A− 2var(X)2

) (
125
√
2− 42

√
15
)
+ 2p · var(X)2

(
1000
√
2− 333

√
15
)

4000 (var(X)p)
3/2

;

it holds that

∂δE
∂p

> 0.

Therefore, if there is no difference between the classes and the between
samples similarity is evaluated using the Euclidean distance, the test samples
are on average more similar to SMOTE samples than to original samples; the
difference between the average values increases with the number of variables
(p).

Variance of Euclidean distance for high-dimensional data Using the Delta
method with a first order Taylor series approximation and the same assump-
tions used for deriving the expected values, the approximate variance of the
Euclidean distance for high-dimensional data is

var (d(a, b)) ≈ var (d2(a, b))

4 · E (d2(a, b))
.
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The variance of the Euclidean distance between a test sample and an original
sample is approximately

var
(
d(Xtest,X)

)
≈ A− 2var(X)2

4var(X)

while the variance of the Euclidean distance between SMOTE and test sam-
ples is approximately

var(d(Xtest,S)) ≈
3 ·
(
7A+ p

9
var(X)2 − 14var(X)2

)
100 · var(X)

Let us define δV the difference between the two variances (SMOTE -
original),

δV = var
(
d(Xtest,S)

)
− var

(
d(Xtest,X)

)
= p · var(X)

300
− A− 2var(X)2

25 · var(X)
, (17)

which is a linear increasing function in p. The function has a root in

p∗ =
12 (A− 2var(X)2)

var(X)2

and is positive for any p > p∗; p∗ is a positive number (because A −
2var(X)2 > 0, see Eq. 12). If more than p∗ variables are measured, the
variability of the distance is larger when calculated from a SMOTE rather
than from an original sample. The value p∗ depends on the first four moments
of the distribution of the variables, and can be derived if the distribution is
known.
For example, if the variables are normally distributed it can be shown that
A = 6var(X)2 and p∗ = 48 (here we used the facts that E(X4) = E(X)4 +
6E(X)2var(X) + 3var(X)2 and E(X3) = E(X)3 + 3E(X)var(X) if X is
normally distributed). If the variables are uniformly distributed A = 4.8 ·
var(X)2 and p∗ = 33.6.
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